THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Suggested Solutions for HW1

Field Axioms of real number:

A1. $a + b \in \mathbb{R}$ if $a, b \in \mathbb{R}$;

A2. a + b = b + a if $a, b \in \mathbb{R}$;

A3. $a + (b + c) = (a + b) + c \in \mathbb{R}$ if $a, b, c \in \mathbb{R}$;

A4. There exists $0 \in \mathbb{R}$ such that a + 0 = a for all $a \in \mathbb{R}$;

A5. For any $a \in \mathbb{R}$, there is $b \in \mathbb{R}$ such that a + b = 0;

M1. $a \cdot b \in \mathbb{R}$ if $a, b \in \mathbb{R}$;

M2. $a \cdot b = b \cdot a$ if $a, b \in \mathbb{R}$;

M3. $a \cdot (b \cdot c) = (a \cdot b) \cdot c \in \mathbb{R}$ if $a, b, c \in \mathbb{R}$;

M4. There exists $1 \in \mathbb{R} \setminus \{0\}$ such that $a \cdot 1 = a$ for all $a \in \mathbb{R}$;

M5. For any $a \in \mathbb{R} \setminus \{0\}$, there is $b \in \mathbb{R}$ such that $a \cdot b = 1$;

D. $a \cdot (b+c) = a \cdot b + a \cdot c$ if $a, b, c \in \mathbb{R}$.

Order axioms of real number:

There is a nonempty subset \mathbb{P} of \mathbb{R} , called the set of positive real numbers, such that:

O1. If $a, b \in \mathbb{P}$, then $a + b \in \mathbb{P}$.

O2. If $a, b \in \mathbb{P}$, then $a \cdot b \in \mathbb{P}$.

O3. (Trichotomy property) If $a \in \mathbb{R}$, then exactly one of the following holds:

$$a \in \mathbb{P}, \quad a = 0, \quad -a \in \mathbb{P}.$$

- 1. Using the Axioms, show that
 - (a) for all $a \in \mathbb{R} \setminus \{0\}, 1/(1/a) = a$,
 - (b) If a > b > 0, then $0 < a^{-1} < b^{-1}$.

Solution. (a) We first show the uniqueness of multiplicative inverses given in (M5). Let $a \in \mathbb{R} \setminus \{0\}$. Suppose both $b, c \in \mathbb{R}$ such that $a \cdot b = 1$ and $a \cdot c = 1$. We want to show that b = c.

$b = b \cdot 1$	(M4)
$= b \cdot (a \cdot c)$	(assumption)
$= (b \cdot a) \cdot c$	(M3)
$= (a \cdot b) \cdot c$	(M2)
$= 1 \cdot c$	(assumption)
$= c \cdot 1$	(M2)
= c	(M4).

Since multiplicative inverses are unique, we call it $\frac{1}{a}$. We now show that 1/(1/a) = a. Replacing a with 1/a, we know that 1/(1/a) is the multiplicative inverse of 1/a, so we have

$$\frac{1}{1/a} = \frac{1}{1/a} \cdot 1 \tag{M4}$$

$$=\frac{1}{1/a}\cdot\left(a\cdot\frac{1}{a}\right)\tag{M5}$$

$$= \frac{1}{1/a} \cdot \left(\frac{1}{a} \cdot a\right) \tag{M2}$$

$$= \left(\frac{1}{1/a} \cdot \frac{1}{a}\right) \cdot a \tag{M3}$$

$$= \left(\frac{1}{a} \cdot \frac{1}{1/a}\right) \cdot a \tag{M2}$$

$$= 1 \cdot a \tag{M5}$$

$$= a \cdot 1$$
 (M2)
= a (M4)

(b) We first show the following:

i. Uniqueness of additive inverse: Let $a \in \mathbb{R}$ and suppose both $b, c \in \mathbb{R}$ such that a + b = 0 and a + c = 0. We want to show that b = c.

b = b + 0	(A4)
= b + (a + c)	(assumption)
= (b+a) + c	(A3)
= (a+b) + c	(A2)
= 0 + c	(assumption)
= c + 0	(A2)
= c.	

Since additive inverses are unique, we call it -a.

ii. $0 = a \cdot 0$ for all $a \in \mathbb{R}$:

$$0 = a \cdot 0 + (-a \cdot 0)$$
 (A5, (i) above)
= $a \cdot (0 + 0) + (-a \cdot 0)$ (A4)
= $a \cdot 0 + a \cdot 0 + (-a \cdot 0)$ (D)
= $a \cdot 0$ (A5).

$$= a \cdot 0$$

iii. $a \cdot (-1) = -a$ for all $a \in \mathbb{R}$:

$$0 = a \cdot 0$$
 ((ii) above)
= $a \cdot (1 + (-1))$ (A5, (i) above)
= $a \cdot 1 + a \cdot (-1)$ (D)
= $a + a \cdot (-1)$ (M4).

So $a \cdot (-1)$ is such that $a + a \cdot (-1) = 0$, so by (i) above, $a \cdot (-1) = -a$.

iv. For any $a \in \mathbb{R}$, define $a^2 := a \cdot a$. Then show that $(-1)^2 = 1$:

$$(-1)^{2} = (-1)^{2} + 0$$

$$= (-1)^{2} + (-1) + 1$$

$$= (-1) \cdot (-1) + (-1) + 1$$

$$= (-1) \cdot (-1) + (-1) \cdot 1 + 1$$

$$= (-1) \cdot ((-1) + 1) + 1$$

$$= (-1) \cdot (1 + (-1)) + 1$$

$$= (-1) \cdot 0 + 1$$

$$= 0 + 1$$

$$(A4)$$

$$(M4)$$

$$(M$$

v. for all $a \in \mathbb{R}$ and $a \neq 0$, then $a^2 > 0$: Since $a \neq 0$, by the Trichotomy property, either $a \in \mathbb{P}$ or $-a \in \mathbb{P}$. Then for the case where $a \in \mathbb{P}$, we have $a^2 = a \cdot a \in \mathbb{P}$ by O1. For the case where $-a \in \mathbb{P}$, we have

$$(-a)^{2} = (-a) \cdot (-a) \qquad (\text{definition of square})$$

$$= (a \cdot (-1)) \cdot (a \cdot (-1)) \qquad ((\text{iii}) \text{ above})$$

$$= (a \cdot (-1)) \cdot ((-1) \cdot a) \qquad (M2)$$

$$= a \cdot ((-1) \cdot (-1)) \cdot a \qquad (M3)$$

$$= a \cdot (-1)^{2} \cdot a \qquad (\text{definition of square})$$

$$= a \cdot 1 \cdot a \qquad ((\text{iv}) \text{ above})$$

$$= a^{2}$$

and since $(-a) \in \mathbb{P}$, we see that $a^2 = (-a) \cdot (-a) \in \mathbb{P}$. Therefore, we have that $a^2 > 0$.

vi. 1 > 0: By (M4), we know that $1 \neq 0$. We have

$1 = 1 \cdot 1$	(M4)
$= 1^2$	(definition of square)
> 0	((v) above).

vii. If a > b and c > 0, then $c \cdot a > c \cdot b$, and if a > b and c < 0, then $c \cdot a < c \cdot b$: We know that a > b means $a + (-b) \in \mathbb{P}$, and c > 0 means $c \in \mathbb{P}$. So we have

$$c \cdot a + (-c \cdot b) = c \cdot a + ((-1) \cdot c \cdot b) \qquad ((iii) above)$$
$$= c \cdot a + (c \cdot b \cdot (-1)) \qquad (M2 twice)$$
$$= c \cdot a + (c \cdot (-b)) \qquad ((iii) above)$$
$$= c \cdot (a + (-b)) \qquad (D)$$
$$> 0 \qquad (O2).$$

Now consider the case where a > b and c < 0, that is, that $-c \in \mathbb{P}$. Then we have

$$\begin{aligned} c \cdot b + (-c \cdot a) &= (-c \cdot a) + c \cdot b & (A2) \\ &= (-c \cdot a) + 1 \cdot c \cdot b & (M2,M4) \\ &= (-c \cdot a) + (-1)^2 \cdot c \cdot b & ((iv) above) \\ &= (-c \cdot a) + (-1) \cdot (-1) \cdot c \cdot b & ((iii) above) \\ &= (-c \cdot a) + (-1) \cdot (-c) \cdot b & ((iii) above) \\ &= (-c \cdot a) + ((-c) \cdot (-1) \cdot b) & (M2) \\ &= (-c) \cdot a + ((-c) \cdot b \cdot (-1)) & (M2,M3 above) \\ &= (-c) \cdot a + ((-c) \cdot (-b)) & ((iii) above) \\ &= (-c) \cdot (a + (-b)) & (D) \\ &> 0 & (O2). \end{aligned}$$

viii. If a > 0, then 1/a > 0: If a > 0, then by the Trichotomy property, $a \neq 0$, therefore, 1/a exists. Suppose that 1/a = 0, then

$$1 = a \cdot \frac{1}{a}$$
(M5)
= $a \cdot 0$ (by assumption)
= 0 ((ii) above)

a contradiction. On the other hand, suppose that 1/a < 0, then

$$1 = a \cdot \frac{1}{a}$$
(M5)
< 0 ((vii) above)

which contradicts (vi) above.

Finally we are able to show the main result, which is that if a > b > 0, then $0 < a^{-1} < b^{-1}$, where we understand a^{-1} to be another notation for 1/a. By (viii) above, we see that both $a^{-1}, b^{-1} > 0$. We have:

$$\begin{array}{ll} 0 < b < a \implies 0 \cdot b^{-1} < b \cdot b^{-1} < a \cdot b^{-1} & ((\text{vii}) \text{ above}) \\ \implies 0 < 1 < a \cdot b^{-1} & ((\text{ii}) \text{ above}, \text{ M5}) \\ \implies a^{-1} \cdot 0 < a^{-1} \cdot 1 < a^{-1} \cdot a \cdot b^{-1} & (((\text{vii}) \text{ above}) \\ \implies 0 < a^{-1}b^{-1} & (\text{M4, M5, M2}) \end{array}$$

as required.

2. If A is a non-empty subset of \mathbb{R} such that A is bounded from above. If we denote $-A = \{-a : a \in A\}$, show that $\inf(-A)$ exists and equals to $-\sup A$.

Solution. Since A is non-empty and bounded from above, the set -A is non-empty and bounded from below. Hence, by the completeness of \mathbb{R} , $\inf(-A)$ exists.

◀

It remains to show that $\inf(-A) = -\sup A$. Let $u = \sup A$. We want to show that $-u = \inf(-A)$.

Lower bound: Since $u = \sup A$, we know that $a \leq u$ for all $a \in A$. Multiplying by -1, we see that $-u \leq -a$ for each $a \in A$ and hence -u is a lower bound of -A.

Greatest lower bound property: Let v be a lower bound of -A. Then for any $b \in -A$, we know that $v \leq b$. Note that $-b \in A$, so multiplying by -1 we see that $-b \leq -v$. Since u is the supremum of A, we have that $-b \leq u \leq -v$. Multiplying again by -1 we have $v \leq -u \leq b$ as required.

3. Show that if A, B are bounded subset of \mathbb{R} . Show that

$$\sup(A+B) = \sup A + \sup B$$

where $A + B = \{a + b : a \in A, b \in B\}$. Do we have

$$\sup A \cdot \sup B = \sup(A \cdot B)$$

where $A \cdot B = \{ab : a \in A, b \in B\}$? Justify your answer.

Solution. We will show that $\sup(A + B) \leq \sup A + \sup B$ and $\sup A + \sup B \leq \sup(A + B)$.

 $sup(A + B) \leq sup A + sup B: let a \in A and b \in B.$ We know that $a \leq sup A$ and $b \leq sup B$, so adding these two inequalities together we have $a + b \leq sup A + sup B$. Since a and b were arbitrary, the element a + b was arbitrarily chosen and so the number sup A + sup B is an upper bound of A + B. Hence $sup(A + B) \leq sup A + sup B$.

 $\sup A + \sup B \leq \sup(A + B)$: let $a \in A$. Then for all $b \in B$, $a + b \in A + B$ and we know that $a + b \leq \sup(A + B) \implies b \leq \sup(A + B) - a$. Since this inequality holds for all $b \in B$, this means the number $\sup(A + B) - a$ is an upper bound of the set B, hence we have $\sup B \leq \sup(A+B) - a$. Rearranging gives us $a \leq \sup(A+B) - \sup B$. Since a was chosen arbitrarily, this means the number $\sup(A + B) - \sup B$. Since a was chosen arbitrarily, this means the number $\sup(A + B) - \sup B$. Rearranging the inequality gives the result.

No, we do not have $\sup A \cdot \sup B = \sup(A \cdot B)$. Consider $A = \{-1, 1\}, B = \{-2, 1\}$. Then $\sup A = 1$, $\sup B = 1$, but $\sup(A \cdot B) = 2$.

4. Let X be a non-empty set and $f, g : X \to \mathbb{R}$ be two real valued function with bounded ranges. Show that

$$\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}.$$

Give an example showing that the inequality can be a strict inequality.

Solution. Since f, g have bounded ranges in \mathbb{R} , the supremums exist. Let $u = \sup\{f(x) : x \in X\}$ and $v = \sup\{g(x) : x \in X\}$. Then for all $x \in X$, $f(x) \leq u$ and $g(x) \leq v$. Adding these two inequalities together, we have

$$f(x) + g(x) \le u + v$$

and hence u + v is an upper bound of the set $\{f(x) + g(x) : x \in X\}$. Then by definition of supremum, we have

$$\sup\{f(x) + g(x) : x \in X\} \le u + v = \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$$

as required.

For the example of strict inequality, consider X = [-1, 1] and set f(x) = x, g(x) = -x. Then f(x) + g(x) = 0, so $\sup\{f(x) + g(x) : x \in X\} = 0$, while $\sup\{f(x) : x \in X\} = 1$ and $\sup\{g(x) : x \in X\} = 1$ and so $\sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\} = 2$.

5. Show by using completeness that there is $x \in \mathbb{R}$ so that x > 0 and $x^3 + x = 5$. Show that such x is unique.

Solution. Let $S := \{s \in \mathbb{R} : s^3 + s < 5\}$. Since $1 \in S$, S is not empty. Moreover, S is bounded from above by 5. So by the completeness of \mathbb{R} , $\sup S$ exists in \mathbb{R} and moreover, $x := \sup S \ge 1 > 0$.

Suppose $x^3 + x < 5$. Then by assumption, $5 - x^3 - x > 0$ and since x > 0, we also have $3x^2 + 3x + 2 > 0$. Then by the Archimedean property, we can find an $n \in \mathbb{N}$ such that

$$\frac{1}{n} < \frac{5 - x^3 - x}{3x^2 + 3x + 2}$$

Then since $\frac{1}{n^3} \leq \frac{1}{n}, \frac{1}{n^2} \leq \frac{1}{n}$ and since x > 0, we have

$$\left(x+\frac{1}{n}\right)^{3} + \left(x+\frac{1}{n}\right) = x^{3} + \frac{3x^{2}}{n} + \frac{3x}{n^{2}} + \frac{1}{n^{3}} + x + \frac{1}{n}$$
$$\leq x^{3} + \frac{3x^{2}}{n} + \frac{3x}{n} + \frac{1}{n} + x + \frac{1}{n}$$
$$= x^{3} + x + \frac{1}{n} \left(3x^{2} + 3x + 2\right)$$
$$< x^{3} + x + \left(\frac{5-x^{3}-x}{3x^{2}+3x+2}\right) \left(3x^{2} + 3x + 2\right) = 5.$$

So $\left(x+\frac{1}{n}\right) \in S$, which contradicts the fact that x is an upper bound of S. Hence $x^3 + x < 5$ is not possible.

Suppose on the other hand that $x^3 + x > 5$. Then by assumption, $x^3 + x - 5 > 0$ and since x > 0, we also have $3x^2 + 2 > 0$. Then by the Archimedean property, we can find an $m \in \mathbb{N}$ such that

$$\frac{1}{m} < \frac{x^3 + x - 5}{3x^2 + 2}$$

Then since $\frac{1}{m^3} \leq \frac{1}{m}$ and since x > 0, we have

$$\left(x - \frac{1}{m}\right)^3 + \left(x - \frac{1}{m}\right) = x^3 - \frac{3x^2}{m} + \frac{3x}{m^2} - \frac{1}{m^3} + x - \frac{1}{m}$$

$$> x^3 + x - \frac{3x^2}{m} - \frac{1}{m} - \frac{1}{m^3}$$

$$\ge x^3 + x - \frac{3x^2}{m} - \frac{2}{m}$$

$$= x^3 + x - \frac{1}{m} \left(3x^2 + 2\right)$$

$$> x^3 + x - \left(\frac{x^3 + x - 5}{3x^2 + 2}\right) \left(3x^2 + 2\right) = x^3$$

So $\left(x - \frac{1}{m}\right)$ is an upper bound of *S*, which contradicts the fact that *x* is the least upper bound of *S*. Hence $x^3 + x > 5$ is not possible.

So we have that $x^3 + x = 5$.

For uniqueness, suppose there is a $y \neq x$ such that $y^3 + y = 5$. Then we have

$$0 = 5 - 5$$

= $x^{3} + x - y^{3} - y$
= $x^{3} - y^{3} + x - y$
= $(x - y)(x^{2} + xy - y^{2}) + (x - y)$
= $(x - y)(x^{2} + xy - y^{2} + 1).$

So either x - y = 0 or $x^2 + xy - y^2 + 1 = 0$. If x - y = 0, then we would have x = y, a contradiction, and we are done. On the other hand, suppose $x^2 + xy - y^2 + 1 = 0$. The left hand side is a polynomial in x with determinant

$$\Delta = 5y^2 + 4 > 0, y \in \mathbb{R}$$

and so $x^2 + xy - y^2 + 1 = 0$ admits no real solutions.

◀

5.